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The relative velocity of two fluid particles in homogeneous and stationary turbulence
is considered. Looking for reduced dynamics of turbulent dispersion, we apply the
nonlinear Mori–Zwanzig projector method to the Navier–Stokes equations. The pro-
jector method decomposes the Lagrangian acceleration into a conditionally averaged
part and a random force. The result is an exact generalized Langevin equation for
the Lagrangian velocity differences accounting for the exact equation of the Eulerian
probability density. From the generalized Langevin equation, we obtain a stochastic
model of relative dispersion by stochastic estimation of conditional averages and by
assuming the random force to be Gaussian white noise. This new approach to dis-
persion modelling generalizes and unifies stochastic models based on the well-mixed
condition and the moments approximation. Furthermore, we incorporate viscous
effects in a systematic way. At a moderate Reynolds number, the model agrees qual-
itatively with direct numerical simulations showing highly non-Gaussian separation
and velocity statistics for particle pairs initially close together. At very large Reynolds
numbers, the mean-square separation obeys a Richardson law with coefficient of the
order of 0.1.

1. Introduction
Turbulent dispersion of a contaminant, for example pollutant dispersion in the

atmosphere, is conveniently described in terms of Lagrangian statistics sampled along
the paths of fluid particles (Taylor 1921). In practice, however, the Eulerian statistics
sampled at fixed points in space are far better known from experiments. Hence, the
basic problem of turbulent dispersion is to calculate Lagrangian statistics from given
Eulerian statistics. Lagrangian dispersion models address the problem by statistically
characterizing particle paths from an Eulerian input. Only recently have Lagrangian
statistics become immediately accessible through direct numerical simulations (DNS)
of the Navier–Stokes equation, however with the well-known limitation to moderate
Reynolds numbers.

In contrast, most Lagrangian dispersion models have been developed for large
or infinite Reynolds numbers in accordance with Kolmogorov inertial-range theory.
In order to compare modelled dispersion behaviour to DNS data, one therefore
needs to incorporate finite Reynolds number effects and hence include the viscous
range explicitly. In this work we propose a new approach to a certain class of
Lagrangian dispersion models, so-called stochastic models. Starting from the Navier–
Stokes equation, we describe relative dispersion in stationary, homogeneous, and
locally isotropic turbulence on all scales including the small viscous scales.
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1.1. Stochastic models of turbulent dispersion

Lagrangian stochastic models formulate the time evolution of the particle velocity
in terms of stochastic differential equations. Analogous to the Langevin equation
of Brownian motion, turbulent fluctuations are represented by a stochastic force.
The models are best understood for the description of one-particle ensembles, which
contain only one-point statistical information and hence lack any information about
the different scales of turbulent eddies. Two alternative modelling approaches include
Eulerian statistics in Lagrangian one-particle models: the well-mixed approach of
Thomson (1987) and the moments approximation method of Kaplan & Dinar (1993)
(only the well-mixed approach guarantees consistency, see Du, Wilson & Yee 1994).

One-particle stochastic models have also received a great deal of attention from
the combustion community, since they provide simple closure models for the Eulerian
(one-point) probability density function (p.d.f.). The transport equation of the Eulerian
p.d.f. contains conditional averages which are non-closed and require modelling (Pope
1985). In Lagrangian p.d.f. methods, stochastic models for the fluid particle paths
are used to determine both the Lagrangian and the Eulerian p.d.f.s (Pope 1994). The
model coefficients are expressed in terms of low-order Eulerian moments according
to certain consistency requirements. Whereas the exact but unclosed p.d.f. transport
equations have been known for a long time, the corresponding exact Langevin
equations in the one-particle case have only recently been formulated (Heinz 1997).

A modelled ensemble of single particles allows the calculation of mean concentra-
tions, whereas an ensemble of particle pairs allows the calculation of concentration
fluctuations. To this end, a one-dimensional two-particle stochastic model has been
proposed by Durbin (1980). Three-dimensional models at infinite Reynolds and
Péclet numbers have been considered in Thomson (1990) and Borgas & Sawford
(1994) based on the well-mixed criterion.

A moments approximation method for relative dispersion at high Reynolds num-
bers has been investigated by Novikov and co-workers (Novikov 1989; Pedrizzetti &
Novikov 1994). Their work can be regarded as a Lagrangian p.d.f. method: given a
Lagrangian model one can investigate the corresponding Eulerian p.d.f. In the work
of Pedrizzetti & Novikov (1994), this is the p.d.f. of spatial velocity increments which
has received much attention by experimentalists. It is well established experimentally
and numerically that the p.d.f. of velocity increments shows exponential tails on sub-
integral scales corresponding to anomalous scaling of higher-order velocity structure
functions. Anomalous scaling is regarded as an important signature of turbulent in-
termittency (Frisch 1995). Although Pedrizzetti & Novikov (1994) find their stochastic
model to be compatible with exponential tails of the Eulerian p.d.f., it remains open
whether the model reliably represents small-scale relative dispersion.

The infinite Reynolds number models of Thomson and Novikov are briefly dis-
cussed in § 3 and generalized in §§ 4 and 5 by means of an exact generalized Langevin
equation for the relative dispersion of two fluid particles. The dispersion model of
Durbin (1980) has been extended to include finite Reynolds and Péclet number effects,
but lacks certain consistency requirements guaranteed by the well-mixed approach
(Sawford & Hunt 1986). Recently, Borgas & Sawford (1996) investigated the effects of
molecular diffusion and viscosity on the concentration statistics produced by decaying
turbulence behind a grid. Their marked molecule approach, in which time histories of
tracer molecules are modelled, rather than those of fluid particles, yields an improved
description of the experimental data. However, the inclusion of viscous and diffusive
effects is ad hoc and in order to satisfy the well-mixed condition they have to include
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an unphysical drift term in the advection equation. In this paper we demonstrate that
viscous effects cannot be taken into account by merely extending the energy spectrum
or second-order structure function to include the viscous range (Sawford & Hunt
1986; Borgas & Sawford 1996).

1.2. The projector approach to dispersion modelling

We restrict ourselves to the relative motion of two fluid particles and look for a reduced
statistical Lagrangian description of relative dispersion by constructing a stochastic
model valid for arbitrary turbulent Reynolds numbers. We apply the nonlinear Mori–
Zwanzig projection operator method (Grabert 1982) to the Navier–Stokes equations
for an ensemble of particle pairs. As known from the theory of Brownian motion
in non-equilibrium statistical mechanics, the deterministic equations of motion with
random initial conditions can be rewritten in the form of exact generalized Langevin
equations (Lindenberg & West 1990). The linear Mori–Zwanzig projector method
has been introduced in the context of turbulent dispersion by Grossmann & Thomae
(1982, henceforth referred to as GT82).

In an original attempt to relate the correlation at two different times of velocity
differences between two fluid particles to Eulerian structure functions, GT82 apply
the linear Mori–Zwanzig projector formalism directly to the Navier–Stokes equations.
Their results have been used by Grossmann & Procaccia (1984) together with several
assumptions to derive closed ordinary differential equations for the mean-square
separation of two fluid particles. The nonlinearity due to the Lagrangian paths is
taken into account only phenomenologically, but Grossmann & Procaccia (1984)
not only describe the mean-square separation in the inertial range, but also find the
correct asymptotic behaviour in the viscous subrange.

In this work, we consider the problem setting of GT82, but we make use of
the nonlinear Mori–Zwanzig projector method in order to capture the inherent
nonlinearities. The difference between the linear and the nonlinear theory lies in
the choice of the projection operator P to be defined in § 4. In the linear case
P projects onto the initial velocities. In the nonlinear case P is essentially the
conditional average for fixed velocity increments. Rather than looking for equations
for the mean separation, we formally derive exact generalized Langevin equations,
which we then approximate by stochastic differential equations. This yields nonlinear
stochastic models for the relative separation and velocity of two fluid particles, thus
extending the models of Thomson and Novikov. Furthermore, the nonlinear theory
readily allows the exact equation for the Eulerian p.d.f. of velocity increments to be
recovered.

The projector method decomposes the time rate of change of the dynamical vari-
ables, which in this context are the components of relative acceleration, into a sys-
tematic drift and a random force representing turbulent fluctuations. The correlation
of the random force is related to the drift by a fluctuation–dissipation theorem, which
has to be fulfilled to guarantee consistency with the Eulerian statistics even if one
introduces approximations (see the discussion in § 3). The nonlinear projector method
formulates drift and random force as conditional averages which we approximate
by lowest-order stochastic estimation. The coefficients of the Langevin equation are
expressed by Eulerian velocity and pressure structure functions known from experi-
ments and analytically represented by interpolation functions. The scale dependence
on viscous, inertial and integral scales thus follows from the theory including the
approximations. The amplitudes of the stochastic force in the three scaling ranges,
however, are free model parameters and have to be determined by comparison to
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numerical data. We note that we do not account for any intermittency corrections
of the Eulerian velocity statistics as is usually done in stochastic dispersion studies
(Borgas & Sawford 1994, but see the discussion in § 7). Assuming the random force
to be Gaussian distributed and delta-correlated in time (white noise) finally yields a
simple Markovian dispersion model.

The Markovian dispersion model is solved numerically for separation and velocity
statistics. For the first time we compare the relative dispersion results of a stochastic
model to DNS (Yeung 1994). The Markov model describes the mean-square sepa-
ration reasonably well on all scales. The velocity statistics suggests that the viscous
range can effectively be modelled by choosing the free parameter of the model, the
amplitude of the stochastic force, to be larger in the viscous range than in the inertial
range. The Richardson coefficient is found to be smaller than for the well-mixed
models and of O(0.1).

The probability densities of relative separation and longitudinal velocity difference
show a strong deviation from a Gaussian distribution in the transition region from
viscous to integral scales. The model captures the qualitative trends in the dependence
on the initial separation, but underestimates peak values of skewness and flatness.

In the main body of this paper we consider the evolution of particle velocities only
and we neglect intermittency effects. Furthermore, our Lagrangian modelling approach
can also be applied to the time histories of concentration differences between two
fluid particles. Whereas traditional two-particle models describe only the variance of
a passive scalar field, our approach allows higher-order two-point statistics such as
scalar structure functions of arbitrary order and Péclet number to be extracted. In
Appendix B we demonstrate how this yields Kraichnan’s statistical theory of a passive
scalar advected by a Gaussian white-noise velocity field. Kraichnan (1994) showed
that the mutual effect of random advection and molecular diffusion causes the scalar
field to become intermittent. Scalar intermittency appears as anomalous scaling of
scalar structure functions established for the highly simplified case that the advecting
velocity field is non-intermittent and Gaussian.

This paper is organized as follows. In § 2 we formulate the statistical description
in terms of Eulerian and Lagrangian variables. The stochastic models of Thomson
and Novikov are introduced in § 3. After summarizing the results from the linear
projector method (GT82) we derive the nonlinear generalized Langevin equation in
§ 4. Section 5 discusses the principal approximations of the different terms in the
Langevin equation. The numerical simulation of the stochastic dispersion model is
given in § 6 and compared to the DNS data of Yeung (1994). We discuss possible
improvements of the dispersion model and conclude in § 7.

2. Eulerian versus Lagrangian variables
In the Eulerian representation the incompressible velocity field is described as a

three-dimensional vector field u(x, t) with ∂xiui(x, t) = 0 at a fixed position x governed
by the Navier–Stokes equation

∂tui(x, t) + um(x, t)∂xmui(x, t) = ν∂xm∂xmui(x, t)− ∂xip(x, t), (2.1)

plus appropriate initial and boundary conditions. In (2.1), ∂t and ∂xi denote par-
tial differentiation with respect to time and space coordinates respectively, ν is the
kinematic viscosity, p is pressure divided by mass density and repeated indices are
summed over.

Turbulent transport is most conveniently described in terms of Lagrangian statistics
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based on the representation of the turbulent velocity field by fluid particles. Particles
are points lying on a trajectory X (t; x0) which are labelled by their initial position
X (0; x0) = x0 at the reference time t = 0. The particle trajectories satisfy

d

dt
X (t; x0) = u(t; x0), (2.2)

where by definition the Lagrangian velocity u(t; x0) and the Eulerian velocity at the
position of the fluid particle are identical: u(t; x0) = u(X (t; x0), t). Motivated by the
Galilean invariance of the Navier–Stokes equations, as natural dynamical variables
to study turbulent dispersion we choose the relative velocities of two fluid particles.
At time t the particles are separated by a distance

r(t) ≡ r(t; r0, x0) = X (t; x0 + r0)− X (t; x0), (2.3)

where all particle pairs have the initial separation r(0) = r0. The relative velocities are

v(t) ≡ v(t; r0, x0) = u(X (t; x0 + r0), t)− u(X (t; x0), t), (2.4)

where initially v0 ≡ v(0; r0, x0) = u(x0 + r0, 0)−u(x0, 0). Although we will often use the
shorter notation, the dependence of v(t) and v0 on r0 and x0 is important for what
follows. The dynamics of r(t) is obviously given by

d

dt
r(t) = v(t). (2.5)

The Navier–Stokes equation in terms of the Lagrangian velocity differences reads

d

dt
vi(t) = ν∂xm∂xmvi(t)− ∂xiπ(t), (2.6)

where π(t) is the pressure difference

π(t) ≡ π(t; r0, x0) = p(X (t; x0 + r0), t)− p(X (t; x0), t). (2.7)

In equation (2.6) the partial derivatives with respect to x are to be interpreted such
that first one has to expand the differences and then differentiate with respect to the
first argument of the Eulerian variables. The time derivative d/dt in (2.6) will be
further investigated in § 4.

Describing the statistical state of the flow in terms of v and π is equivalent to
specifying the static velocity structure functions such as Dij(r0) = 〈v0iv0j〉, Dijk(r0) =
〈v0iv0jv0k〉, or the pressure structure function Dππ(r0) = 〈π0π0〉. We assume that the
ensemble average 〈··〉 is well defined for all moments of velocity and pressure up
to sufficiently high order. The notation readily reflects the assumption that the
ensemble is homogeneous and stationary with respect to the Eulerian coordinates x, t.
Furthermore, owing to homogeneity the ensemble average is assumed to be equal to
a space average 〈(··)〉 = (1/V )

∫
V

dx0(··) over the initial positions of the particle pairs
in the fluid volume V . Additionally, assuming reflection invariance and isotropy with
respect to r allows the structure functions to be decomposed into longitudinal and
transversal parts, for instance

Dij(r) = DNN(r)(δij − ninj) + DLL(r)ninj , (2.8)

where r = |r| and n = r/r.
The mean rate of energy dissipation per unit volume ε determines the Kolmogorov

length, time, and velocity scales of the turbulence: η = (ν3/ε)1/4, τη = (ν/ε)1/2, vη =
(νε)1/4, respectively. The Taylor–Reynolds number Reλ = u′λ/ν is defined with the
root-mean-square turbulence velocity u′ and the Taylor microscale λ = u′/(〈∂x1

u1〉)1/2.
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As is well-known from the kinematics of homogeneous and isotropic turbulence,
transversal structure functions can be expressed in terms of longitudinal ones owing
to incompressibility (Monin & Yaglom 1975). Hence, the most important statistical
quantity is the second-order longitudinal structure function DLL(r), which is very well
approximated by a Batchelor type of interpolation function (Sawford & Hunt 1986)

DLL(r) = 2u′2
( r2

r2
d + r2

)2/3( r2

r2 + r2
L

)1/3

, (2.9)

here written down without any intermittency corrections.
In (2.9) the length scale rd = (15bLL)3/4η determines the crossover from the viscous

to the inertial subrange, where bLL denotes the Kolmogorov constant. The crossover
rL from inertial to integral scales can be related to the integral scale L1:

L1 ≡
∫ ∞

0

(
1− DLL(r)

2u′2

)
dr ≈ BrL. (2.10)

For large r (rd ≈ 0) the integral can be evaluated exactly: B = Γ ( 5
6
)Γ ( 1

2
)/Γ ( 1

3
) ≈ 0.75

(Borgas & Sawford 1994) and B increases slightly for finite rd. The three asymptotic
ranges of (2.9) for viscous, inertial, and integral scales can readily be identified.

The normalized energy dissipation rate cε defined as ε = cε(Reλ)u
′3/L1 is known

to be Reynolds-number dependent for Reλ 6 100 (Sreenivasan 1984; Lohse 1995).
The experimental data of Sreenivasan (1984) suggest a constant asymptotic value
cε(∞) ≈ 1.0 where saturation takes place around Reλ ≈ 50. Other authors give lower

values, e.g. cε(∞) ≈ 0.8 (Townsend 1976). DNS suggests cε ∝ Re
−1/2
λ without a clear

saturation in the range of Reynolds numbers (38 6 Reλ 6 93) investigated by Yeung
& Pope (1989). Since no fully consistent picture has yet emerged, we specify our
numerical model by assuming the usual Kolmogorov constant bLL = 2.0 and B = 0.8
which fixes cε = B(2/bLL)3/2 = 0.8.

The pressure structure function Dππ(r) depends only on r = |r| if one assumes local
isotropy. Taylor expansion for small arguments yields for r � η

Dππ(r) = cp(r/η)2v4
η + O(r4). (2.11)

The inertial range behaviour follows from dimensional analysis: Dππ(r) ∝ ε4/3r4/3. The
variance of the pressure gradient cp = 1

3
〈(∇p)2〉τη/ε has been found to be strongly

Reynolds-number dependent. Yeung & Pope (1989) give cp ∝ Re
1/2
λ in the range

of their DNS study. There is hardly any indication that cp approaches a constant
asymptotic value at high Reynolds numbers.

3. Stochastic modelling of relative dispersion
The key statistical quantity to study relative turbulent dispersion is the Lagrangian

p.d.f. PL(v, r, t|r0). For example, PL determines the mean-square separation of two fluid
particles 〈r2(t)〉 averaged over ensembles of particle trajectories, which is related to the
size of a pollutant cloud (Batchelor 1952). The p.d.f. PL characterizes the probability
of two fluid particles at time t having the velocity difference v and separation r given
that they were separated by r0 initially and is defined as

PL(v, r, t|r0) = 〈δ(v − v(t))δ(r − r(t))〉. (3.1)

The connection between Lagrangian and Eulerian descriptions of turbulence is
established via the fundamental relation due to Novikov (1969) (see also Pope 1985,
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equation 4.24). In a homogeneous and incompressible flow the Eulerian p.d.f. PE(v|r, t)
of a velocity increment v between two fixed points in a distance r at time t is related
to the Lagrangian p.d.f. PL by

PE(v|r, t) =

∫
dr0PL(v, r, t|r0), (3.2)

where in a stationary state PE is independent of time and initially

PL(v, r, 0|r0) = PE(v|r0)δ(r − r0). (3.3)

As is shown in Appendix A, PE(v|r) obeys the exact continuity equation

vi∂riPE + ∂vi(AiPE) = 0, (3.4)

where A denotes the conditionally averaged relative acceleration vector for fixed
velocity increments v. Since the exact evolution of PL in terms of PE remains unknown,
models are needed.

Two related modelling approaches have been suggested: the well-mixed condition
of Thomson (1990) and a hierarchy of constraints of the model coefficients introduced
by Novikov (1989). They both start from the assumption that the Lagrangian velocity
difference evolves as a continuous Markov process obeying the (Ito-) stochastic
differential equation

dvi(t) = ai(r, v, t) dt+ bij(r, v, t) dWj(t), (3.5)

where the component dWj is the increment of a Wiener process or Gaussian white
noise with correlation averaged over the ensemble of realizations of the stochastic
force:

〈dWi(t) dWj(t+ τ)〉 = δijδ(τ) dt dτ. (3.6)

In §§ 4 and 5 we try to clarify the assumptions underlying a stochastic Lagrangian
description such as (3.5).

The Lagrangian p.d.f. PL then satisfies a Fokker–Planck equation equivalent to
(3.5):

∂tPL + vi∂riPL + ∂vi(aiPL) = ∂2
vivj

(MijPL), (3.7)

where Mij = 1
2
bikbjk . Owing to the fundamental relation (3.2) the same equation is

satisfied by the Eulerian p.d.f. PE , but the first term in (3.7) then vanishes owing to
stationarity.

Thomson’s well-mixed criterion identifies the necessary and sufficient condition for
the model coefficients a and b to satisfy

ai = Ai +
1

PE
∂vi(MijPE), (3.8)

such that the conditional acceleration A as calculated from (3.8) satisfies the continuity
equation (3.4). If PE is assumed to be Gaussian models consistent with the well-mixed
condition (3.8) have a conditional acceleration A quadratic in the velocities v(t)
(Thomson 1990; Borgas & Sawford 1994). The stochastic force is assumed to be
isotropic:

bij = bδij , (3.9)

but (3.8) does not specify the models unambiguously.
The moments approximation method of Pedrizzetti & Novikov (1994) instead does



174 B. M. O. Heppe

not explicitly assume a certain shape of PE and employs the ansatz ai = −γijvj . Using
(3.9) they derive a hierarchy of constraints for the model coefficients by taking the
moments equations implied by (3.4).

We have seen that once a model for the random trajectories is known it determines
the Lagrangian and Eulerian statistics. The latter, i.e. PE , is assumed to be given and
hence imposes constraints on the model coefficients. Note that PE cannot be Gaussian
since the skewness or third-order structure function does not vanish by means of the
Kolmogorov structure equation (Frisch 1995, chap. 6.2). Moreover, in practice only a
few low-order moments of PE are known to some accuracy.

Hence, in order to formulate a stochastic dispersion model one has to compromise.
Either one assumes PE to be Gaussian or of any other approximated form, for example
the maximum missing information p.d.f. corresponding to the given information (Du
et al. 1994), and constructs the model fully consistent with (3.8) and (3.4) (Thomson
1987, 1990), although one can solve (3.4) analytically only for particular forms of PE .
Or, the model coefficients are chosen such that only the known low-order moments are
consistent with the Eulerian constraints (Pedrizzetti & Novikov 1994). We will follow
the second approach since this allows the third-order structure function representing
the mean energy transfer from the large to the small turbulent scales to be included.
The theory developed in §§ 4 and 5 generalizes the stochastic model (3.5) by providing
a systematic approach starting from the Navier–Stokes equation. Moreover, in the
Markov approximation we obtain further information on the model coefficients a and
M . The reader only interested in the the dispersion properties of our model might
skip the somewhat formal §§ 4 and 5 and continue with § 6. However, we try to keep
the theoretical derivation self-consistent and do not presume any prior knowledge of
the projector formalism.

Note that there are two different kinds of non-uniqueness for the construction of
stochastic dispersion models: different Lagrangian models with different dispersion
statistics can be consistent with given Eulerian statistics. The first non-uniqueness
is well-known and refers to the determination of A. The conditional acceleration
A requires information about the joint p.d.f. of relative velocities and accelerations.
Many choices of A can be consistent with the marginal p.d.f. PE(v|r). The second
non-uniqueness is due to the memory M . As one can see from (3.4) any choice of M is
consistent with the Eulerian constraint if the model is formulated according to the well-
mixed criterion (3.8). The exact Langevin equation in § 4 generalizes the well-mixed
condition; however, the (exact) Eulerian constraint (3.4) remains unchanged. Hence,
it is not possible to determine the memory from Eulerian consistency requirements,
which explains the persistent lack of a rigorous theory for turbulent transport.
Fortunately, highly simplifying assumptions on M already permit many dynamical
features of turbulent dispersion to be included as shown in the numerical simulations
of § 6.

4. The generalized Langevin equation
We first define the spaces of the relevant variables and then investigate their time

derivatives, i.e. the d/dt in (2.6). The relative velocities (2.4) and pressure (2.7) are
differences of ui and p at time t at the positions x1 = X (t; x0 + r0) and x2 = X (t; x0).
Consequently, we introduce the space of variables

M = {A(x1, x2, t) : x1 = X (t; x0 + r0), x2 = X (t; x0)}, (4.1)
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where A(t) may be any sum of products of velocity components ui(x, t), i = 1, 2, 3, and
p(x, t). This definition includes all powers vn(t) and their generating function, i.e. the
three-dimensional delta-function δ(v − v(t)) by means of vn(t) =

∫
dvvnδ(v − v(t)).

Important for the following will be the subspace of the relevant variables at the
reference time t = 0

M0 = {A0 ≡ A(0) : A(t) ∈ M}. (4.2)

Although we assume the Eulerian statistics to be stationary, the relative dispersion
of two fluid particles is a non-stationary process and the particle-pair mean-square
separation increases with time. GT82 realized that this implies a non-symmetric time
evolution operator L and gave an explicit representation of L.

This evolution in time is governed by the Liouville operator L :M0 →M0 defined
as

LA0 =
d

dt
A(t)|t=0. (4.3)

Furthermore

A(t) =

∞∑
n=0

tn

n!

dn

dtn
A(t)|t=0 = eLtA0, (4.4)

where differentiation of the last equation gives

d

dt
A(t) = eLtLA0. (4.5)

Equation (4.5) will be the starting point for the projector method.
An explicit representation of L in M0 can be obtained from

d

dt
A(t) =

(
∂t + um(x1, t)∂x1m

+ um(x2, t)∂x2m

)
A(t)

∣∣∣x1=X (t;x0+r0)

x2=X (t;x0)
, (4.6)

and in the limit t→ 0 where x1 = x0 + r0 and x2 = x0,

L = ∂t + um(x0, 0)∂xm + vm(0; r0, x0)∂rm , (4.7)

together with a skewness formula expressing the non-stationarity or time reversal
asymmetry of relative dispersion a0, b0 ∈ M0

〈a0Lb0〉+ 〈(La0)b0〉 = ∂rm〈vm0a0b0〉. (4.8)

Note that incompressibility implies ∂xj uj(x, t) = 0, but only ∂rj v0j = 0 at t = 0 with
no general statement for t 6= 0.

4.1. The linear projector method

In order to emphasize the difference between our approach and the work of GT82, we
will now briefly summarize their results. GT82 introduce the ensemble average as an
inner product in M, where they defined M more restrictively, and define a projector
PGT in M0 on the initial velocity differences

PGTAi0 = vj0〈vj0vk0〉−1〈vk0Ai0〉 (4.9)

in accordance with the linear Mori–Zwanzig theory (Lindenberg & West 1990).
The projector method was applied in the form of a resolvent decomposition of
the Laplace-transformed Lagrangian correlation function. Neglecting memory effects
in the so-called relaxation approximation the Lagrangian correlation then decays
exponentially:

〈vi0eLtvj0〉 = Dik(r0)(e
−γ(r0)t)kj , (4.10)
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where the relaxation matrix is given by

γij(r0) = − 1
2
∂rmDmik(r0)D

−1
kj (r0). (4.11)

By the same reasoning to be applied below, the linear theory yields a linear
Langevin equation where the coefficients depend on the initial separation r0. By using
the usual white noise approximations for the random force, the linear theory is thus
incapable of capturing an intermediate scaling range between the initial ballistic and
the final Taylor diffusive behaviour of the dispersion. However, we can overcome the
restrictions of the linear theory, if we phenomenologically replace the dependence on
r0 by a dependece on the instantaneous r(t). This replacement is not supported by
the linear theory, but yields the same nonlinear model of § 6 (Heppe 1997).

The nonlinear theory of the next section allows us to obtain a nonlinear stochastic
model generalizing the relative dispersion models of Thomson (1990) and Pedrizzetti
& Novikov (1994). The linear theory although formally exact is unsuitable for simple
approximations since the nonlinear couplings are included implicitly via a complicated
dynamics of the random force.

4.2. The nonlinear projector method

A nonlinear Langevin equation results from treating the nonlinear interactions among
the relevant dynamical variables v(t) explicitly, especially those due to the Lagrangian
paths. Those nonlinear couplings are always of importance if the steady state itself
is a state far from thermal equilibrium (Grabert, Hanggi & Talkner 1980). The
main difference between the linear and the nonlinear theory lies in the choice of the
projector P . In the linear theory P was a projection onto the initial velocities v0

(4.9). According to the nonlinear theory we project onto the generating function of
all polynomials in v0, a larger subset ofM0. Projection onto the subspace spanned by
the set δ(v − v0) is the same as projection onto the subspace of all functions of the v0.

The generating function is obviously related to the fine-grained Lagrangian p.d.f.
defined as δ(v − v(t))δ(r − r(t)). Its ensemble average gives the Lagrangian p.d.f. PL
(3.1).

As in the linear theory, for a, b ∈ M the ensemble average of particle pairs with
a fixed initial separation r0 is introduced as an inner product 〈ab〉. Because of the
fundamental relation (3.2) and from the delta-function property

δ(v − v0)δ(v′ − v0) = δ(v − v′)δ(v − v0), (4.12)

and 〈δ(v − v0)〉 = PE(v|r0) we have the following identity:

〈δ(v − v0)δ(v′ − v0)〉 = PE(v|r0)δ(v′ − v). (4.13)

We can now define a projection operator P :M→M0 as

Pb(t; r0, x0) =

∫
dv
〈b(t)δ(v − v0)〉

PE(v|r0)
δ(v − v0). (4.14)

Here, the dependence of Pb(t; r0, x0) on the initial values r0 and x0 via δ(v−v0) should
be noted. In the following we will make use of the conditional average of b(t) for a
given velocity increment v (and a fixed r0) defined as 〈b(t)|v〉 = 〈b(t)δ(v−v0)〉/PE(v|r0).
The definition (4.14) then identifies the projector as an average conditional upon
the initial velocity difference Pb(t) = 〈b(t)|v0〉 from which the properties of P as
an orthogonal projector, P 2 = P and 〈aPb〉 = 〈(Pa)b〉, can readily be verified.
Furthermore, P projects the initial generating function onto itself: Pδ(v − v0) =
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δ(v− v0). All averages thus depend parametrically on r0, but this dependence will not
be expressed explicitly in the following.

The projector method exactly rewrites the Liouville equation (4.5) in a form that
more closely resembles a Langevin equation by means of the projector P and its
complement Q ≡ 1− P :

d

dt
v(t) = Lv(t) = eLtLv0 = eLtPLv0 + eLtQLv0. (4.15)

The second term of (4.15) can be rewritten by use of the operator identity

eLt =

∫ t

0

eL(t−τ)PLeQLτ dτ+ eQLt, (4.16)

which can be verified by Laplace transform. Inserting (4.16) into (4.15) yields the
generalized Langevin equation

d

dt
v(t) = eLtPLv0 +

∫ t

0

eL(t−τ)PLeQLτQLv0 dτ+ eQLtQLv0. (4.17)

The first term in (4.17) is the conditional average of the relative acceleration:

eLtPLv0 =

∫
dv〈Lv0|v(r)〉δ(v − v(t)) = 〈Lv0|v(t)〉. (4.18)

In (4.18) we have used eLtδ(v− v0) = δ(v− v(t)) which follows from (4.4) and the fact
that L is a first-order differential operator (4.7). The last equality in (4.18) means that
first one has to calculate the conditional average 〈Lv0|v〉 and then replace v by v(t).

We first discuss the third term in (4.17), the so-called random force

f(t) ≡ f(t; r0, x0) = eQLtQLv0, (4.19)

which in general is very difficult to evaluate exactly. By construction f(t) is orthogonal
to all functions of v0 at all times Pf(t) = 0, which implies that 〈f(t)δ(v − v0)〉 = 0
and after integration over v that the ensemble average of f(t) vanishes:

〈f(t)〉 = 0, (4.20)

which suggests that f(t) might successfully be modelled as a stochastic force.
The time integral in the second term in (4.17) allows us to identify this term as

a memory contribution since the integrand depends on all times 0 6 τ 6 t. The
memory term is related to the random force by definition of the projection operator
(cf. (4.18)): ∫ t

0

dτeL(t−τ)
∫

dv〈Lf(τ)|v〉δ(v − v0) =

∫ t

0

dτ〈Lf(τ)|v(t− τ)〉. (4.21)

As shown in Appendix A, a physically more suggestive form of the memory kernel
can be derived which holds only in stationary and homogeneous turbulence:

〈Lfi(τ)|v〉 =
1

PE
∂vj

(
〈fi(τ)fj(0)|v〉PE

)
. (4.22)

Hence, the random force and the memory are related by a fluctuation–dissipation rela-
tion. In other words, the memory is essentially the conditionally averaged correlation
function of the random forces.

Thus we have seen that for each choice of the projection operator P the Mori–
Zwanzig method yields a unique decomposition of the time rate of change of the
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Lagrangian velocity differences into a systematic and a random part. The random
part has the property that its statistical average over realizations of the stochastic
process vanishes. The systematic part consists of the relative acceleration conditionally
averaged over the (stationary) Eulerian ensemble and a memory term induced by the
random forces.

We have transformed the dynamical system (2.5) and (2.6) for an ensemble of
particle pairs into an exact generalized Langevin equation (4.17) which including the
above definitions can be rewritten as

d

dt
r(t) = v(t), (4.23)

d

dt
v(t) = 〈Lv0|v(t)〉+

∫ t

0

dτ
[ 1

PE
∂vj

(
〈f(τ)fj(0)|v〉PE

)]
v=v(t−τ)

+f(t). (4.24)

Alternatively, the generalized Langevin equation (4.24) can be derived from the
evolution equation of δ(v − v(t)) (Heppe 1997). Only the conditional acceleration
appears in the continuity equation for the Eulerian p.d.f. PE(v|r) (3.4):

vm∂rmPE + ∂vm(〈Lv0m|v〉PE) = 0. (4.25)

Note that this equation is an exact consequence of the skewness formula (4.8) for
homogeneous and stationary turbulence, i.e. it holds for arbitrary approximations of
the memory, which will be discussed in the next section.

5. Approximations of the model coefficients
For the derivation of the generalized Langevin equation (4.24) in the previous

section we have only assumed homogeneity and stationarity of the turbulent ensemble.
In order to obtain useful stochastic models from (4.24) we have to approximate the
drift and the memory term and need to make further assumptions about the time
evolution of the random forces. Additionally, for simplicity we will assume local
isotropy such that scalar functions of the separation depend only on its magnitude
r(t) = |r(t)| and tensors can be decomposed into longitudinal and transversal parts
(e.g. (2.8)).

5.1. The conditional acceleration

In applications of the nonlinear projector method, one part of the systematic drift, the
conditionally averaged acceleration, is usually approximated by expanding δ(v − v0) in
〈Lv0|v〉 in complete orthogonal polynomials (Zwanzig 1980). If PE(v|r) were Gaussian,
Hermite polynomials would be the natural choice corresponding to a Gram–Chalier
expansion (Lumley 1970) of the joint p.d.f. of Lv and v. This yields an expansion of
the form

Ai(v) = 〈Lv0|v〉 = αi + βijvj + γijkvjvk + . . . . (5.1)

Rather than expanding δ(v − v0) we regard (5.1) as an ansatz for the nonlinear
least-mean-square estimate of the conditional average A (Adrian 1996). Minimizing
the mean-square error of the estimate yields a system of equations for the unknown
(non-random) coefficients αi, βij , and γijk

〈(Ai − αi − βijvj − γijkvjvk)〉 = 0,
〈(Ai − αi − βijvj − γijkvjvk)vl〉 = 0,
〈(Ai − αi − βijvj − γijkvjvk)vlvn〉 = 0,

 (5.2)
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and so forth. Noting that ensemble averaging is equivalent to integrating the Eulerian
p.d.f. PE over velocity increments, the first term in each equation of (5.2) gives the
joint moment or structure function of the relative acceleration Lvi and 1, vl , vlvn . . .
due to 〈〈Lv0|v〉h(v)〉 = 〈(Lv0)h(v0)〉 where h is an arbitrary function of its argument.
Since we assume the mean values of Lv and v to vanish, the first equation of (5.2)
gives

αi + γijkDjk = 0. (5.3)

The skewness formula (4.8) determines the joint acceleration–velocity structure
function, which by isotropy equals 〈(Lvi)vj〉 = 1

2
∂rmDmij . The linear estimate of A

therefore yields

A
(1)
i = 1

2
{∂rmDmij}D−1

jk vk. (5.4)

This is exactly the result of GT82 for their linear drift term (4.11). The divergence
of the third-order structure function is well known from the Kolmogorov structure
equation and is essentially the energy dissipation rate on inertial-range scales (see (6.1),
(6.2)). This implies that the local Lagrangian time scale tr of two-particle dispersion
in the inertial range is given by tr ∝ DLL(r)/ε ∝ ε−1/3r2/3.

On the other hand, if we assume PE to be Gaussian distributed, PE∝ exp(− 1
2
viD

−1
ij vj),

the linear estimate (5.4) vanishes and one has to include terms quadratic in the
velocities in (5.1). In this case there is no unique solution of (5.2). The solution which
takes 〈(Lvi)vjvk〉 to be fully symmetric and hence equal to 1

3
∂rmDmijk is

AGi = − 1
6
{∂rmDmijk}D−1

jk + 1
6
{∂rmDmijk}D−1

jl D
−1
kn vlvn. (5.5)

By use of ∂rmDmi = 0 and the Gaussian property Dmijk = DmiDjk + DmjDik + DmkDij
(5.5) can be rewritten as

AGi = 1
6
DmiDjk∂rmD

−1
jk + 1

6

(
−Dmi∂rmD−1

nl + D−1
kn ∂rlDik + D−1

jl ∂rnDij

)
vlvn. (5.6)

Note that the order of the matrices does not matter owing to the assumed isotropy.
Each of the three contributions in the quadratic term in (5.6) are known from the
well-mixed approach (Borgas & Sawford 1994). The least-mean-square estimate taken
up to second order for arbitrary PE yields much more complicated coefficients. For
simplicity we will include only the linear drift term A(1) in the numerical simulations
in § 6.

5.2. The memory term

The first obvious approximation of the memory term in the generalized Langevin
equation (4.24) is a coarse graining in time or equivalently the Markov assumption.
The stochastic process in the separation–velocity phase space is assumed to be
Markovian, i.e. the values of r(t) and v(t) at times greater than t depend only on
the present separation and velocity and are independent of the history of values
at times less than t. While a rigorous justification for the Markov assumption in
turbulent transport is still lacking, it has been well known since the work of Taylor
(1921). For the assumption to hold, the relative acceleration correlations have to
decay rapidly. There is some indication that the acceleration of one fluid particle
de-correlates on a time scale proportional to the Kolmogorov time scale τη (Sawford
1991), i.e. diminishes with increasing Reynolds number Reλ. However, Yeung (1997)
has recently found surprisingly long-time persistence of the two-particle acceleration
correlations in his DNS at moderate Reynolds number (Reλ = 140). Hence, on small
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scales at moderate Reλ the Markov approximation has to be regarded as a first guess
only.

We assume that the characteristic time scale τf of the random force f(t) is distinctly
shorter than the time scale for an appreciable change of the velocity difference v(t),
and we expect at least for t � τf the approximation to be reasonable. If τf ∝ τη ,
the approximation becomes better for increasing Reλ. At times of the order of τη the
Markov assumption is likely to fail and we have to expect qualitative deviations of a
Markovian model from the dispersion physics. However, the Markov approximation
might be valid in the inertial range of scales τη � t � TL, where TL is an integral
time scale, and allows efficient numerical solutions of the Langevin equation (4.24).

In the Markov approximation the memory
∫ t

0
dτ〈Lf(τ)|v(t− τ)〉 is replaced by∫ ∞

0

dτ〈Lfi(τ)|v(t)〉 =
[ 1

PE
∂vj

(
Mij(v)PE

)]
v=v(t)

, (5.7)

where we have introduced the memory matrix

Mij(v) =

∫ ∞
0

dτ〈fi(τ)fj(0)|v〉. (5.8)

Equivalently, coarse graining in time means 〈fi(τ)fj(0)|v〉 = 2δ(τ)Mij(v).
We still need an explicit expression for the memory matrix M . Previous Markov

models are recovered by assuming the memory to be independent of the separation
and velocity. Consistency with Kolmogorov theory in the inertial range yields

Mij ∝ εδij , (5.9)

or with slightly greater generality Mij = ε(anij + b(δij − ninj)), where a and b are con-
stant. Here we obtain a dynamical justification of (5.9) from the operator expression
for the force (4.19) or the memory.

If one assumes the relative acceleration Lv0 to be a small quantity, which is hard
to justify in turbulence because of the lack of statistical information on the pressure
term in (2.6), an explicit expression for M can be obtained via an expansion in Lv0

(Zwanzig 1961; Grabert 1982). Retaining only terms up to third order, the memory
reads

Mij(v) =

∫ ∞
0

dτ〈[Lvi(τ)− 〈Lvi(τ)|v〉][Lv0j − 〈Lv0j |v〉]|v〉+ O((Lv0)
3). (5.10)

The lowest-order stochastic estimate of (5.10) is independent of the velocity increments
since the mean relative acceleration vanishes:

Mij ≈ τa〈Lv0iLv0j〉, (5.11)

where τa = taτη ≈ τf is the correlation time of the relative accelerations. The structure
function of the relative acceleration in (5.11) can be evaluated by replacing Lv0 with
the right-hand side of the Navier–Stokes equation (2.6), (GT82). We can see now that
an external force, which maintains stationarity by forcing the large scales only, does
not contribute for particle separations on sub-integral scales, because its structure
function vanishes by definition for r � L1. Of course, on integral scales the forcing
contributes and has to be included in the theoretical description. Without the external
force we have

〈Lv0iLv0j〉 = ν2∇4
rDij |

r0

0 − ∇
2
rDππ|

r0
0 , (5.12)

where we set ∂rm∂rm = ∇2
r . Neglecting the viscous term in the inertial range and on
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integral scales, the longitudinal and transversal components equal 2
3
〈(∇p)2〉v2

η/τ
2
η and

hence

Mij = 2
3
taε〈(∇p)2〉δij . (5.13)

In the viscous range both terms in (5.12) contribute and scale as r2. Therefore,
consistency requires ta to be independent of the separation in the viscous as well as
the inertial range.

5.3. The random force

The nonlinear Langevin equation (4.24) determines the stochastic process for the
Lagrangian velocity differences in term of the process of the random force f(t).
Except for very simple cases the operator expression (4.19) does not allow the
stochastic process of f(t) to be evaluated completely (Zwanzig 1980). Even if we knew
the memory, i.e. the force correlation 〈fi(τ)fj(0)|v〉 together with the vanishing mean
(4.20), this would not determine the stochastic process of f(t) completely. Indeed, we
must know all time correlation functions involving more than two f like

〈fj1 (t1)fj2 (t2) . . . fjn(tn)|v〉. (5.14)

Those higher-order correlations had to be extracted from (4.19) which seems to be
intractable. The only sensible thing to do for practical models is to assume that f(t)
obeys a Gaussian stochastic process and is independent of v. The conditional average
〈·|v〉 is then equivalent to the ensemble average and it is enough to specify

〈fi(t)fj(s)〉 = 〈fi(t− s)fj(0)〉 (5.15)

since higher-order correlations factorize:

〈fj1 (t1)fj2 (t2) . . . fjn(tn)〉 =
∑
perm

n∏
m=1

〈fjm(tm)fj ′m(t′m)〉, (5.16)

where the set {m′} is obtained from {m} by a permutation of jn+1, jn+2, . . . j2n and the
sum is over all permutations. Note that a similar property to (5.15) does not hold in
general for the conditional average 〈fi(t− s)fj(0)|v〉.

The usual interpretation of a Langevin equation

d

dt
a(t) = g(a(t)) + ζ(t) (5.17)

is that of an equation in the state space Σa and two kinds of averages are explained:
the average over the random forces ζ, which is done with fixed values of the dy-
namical variables a and which is specified by the correlations 〈ζ(t1)...ζ(tn)|a〉 and an
average over the dynamical variables 〈..〉 =

∫
Σ

daP (a) . . . . Consequently, if we identify
〈ζ(t1)...ζ(tn)|a〉 with 〈f(t1)...f(tn)|v〉, the generalized Langevin equation (4.24) shows
exactly the structure of the familiar stochastic differential equation.

From the Markov approximation (5.7) together with the assumption of a Gaussian
f(t), we obtain a Fokker–Planck equation for the Lagrangian p.d.f. PL(v, r, t|r0) by
standard methods or from the evolution equation for δ(v − v(t)) (Heppe 1997):

∂tPL + vm∂rmPL = −∂vi
(
〈Lv0i|v〉PL

)
+∂vi

(
PEMij(v)∂vj{PL/PE}

)
; (5.18)

or by assuming the memory to have no explicit dependence on v:

∂tPL + vm∂rmPL = −∂vi
(
{〈Lv0i|v〉+Mij∂vj logPE}PL

)
+Mij∂vi∂vjPL. (5.19)
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The Fokker–Planck equation (5.19) is the one considered by Thomson (1990) with
the generalization of a memory matrix possibly dependent on the particle separation.
Note that the assumption that the memory is independent of velocity increments is
required to avoid the Ito–Stratonovich ambiguity in the interpretation of the stochastic
integrals in the Langevin equation (4.24).

6. Numerical simulations of the dispersion model
We specify a stochastic dispersion model in accordance with the theory of § 4

employing the approximations discussed in § 5 and solve it numerically for a large
number of particle pairs (2 × 104). The conditional acceleration is given by its
linear stochastic estimate Ai = −γijvj (5.4). Using the Kolmogorov structure equation
Γij ≡ γikDkj = − 1

2
∂rmDmij can be expressed in terms of the longitudinal second-order

structure function

ΓNN(r) = 2
3
ε− ν

2r

(
r2D′′′LL(r) + 6rD′′LL(r) + 4D′LL(r)

)
, (6.1)

ΓLL(r) = 2
3
ε− ν

r

(
rD′′LL(r) + 4D′LL(r)

)
, (6.2)

where a prime denotes the derivative with respect to r. From the Batchelor interpo-
lation (2.9) the normalized relaxation coefficients in the viscous subrange (VSR) read
γLL = γNN = γVSR/τη ≡ 56

3
(15bLL)−3/2/τη . Furthermore we can see from (6.1) and (6.2)

that the leading contribution to Γ∗ (∗ = NN,LL) in the inertial range is given by the
energy dissipation rate (cf. GT82).

We approximate DNN(r) and Γ∗(r) by interpolation functions analogous to (2.9) to
simplify the numerical calculations. For scales r 6 L1 we use

Γ̃∗(r) =
2

3

(r/η)2

r2
Γ∗ + (r/η)2

v2
η/τη, (6.3)

where r2
ΓLL = 10/γVSR and r2

ΓNN = 5/γVSR so that γVSR determines the crossover
from viscous to integral scales. The relaxation A will be switched off on integral
scales, where ∂rmDmij vanishes if one-point statistics are Gaussian which is usually a
reasonable assumption in isotropic turbulence.

In accordance with K41 dimensional analysis we also employ Γ̃∗ for the memory:

Mij(r) = axΓ̃ij(r). (6.4)

The ax are free parameters, being piecewise constant in the viscous range, the inertial
range, and on integral scales, denoted as aVSR, aISR, and aINT, respectively. This is due
to the lack of knowledge about the time scale of the acceleration correlation τa in
(5.11).

Since PE is only partly known, we choose the following drift term:

ai = −(1 + ax)γ̃ijvj . (6.5)

Note that the memory-induced part of the drift would only be exact if PE was
Gaussian. Nevertheless, (6.5) is consistent with the constraints (3.8) and (3.4) to
second order. Therefore, on subintegral scales our model reads

dvi(t) = −(1 + ax)γ̃ijvjdt+ (2ax)
1/2Γ̃

1/2
ij dWj (6.6)

and essentially coincides with the model of Pedrizzetti & Novikov (1994) in the
inertial range, but with a different choice of model parameters, satisfying the first
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two constraints of their moment hierarchy on all scales. The ‘1’ is omitted on integral
scales. On inertial and integral scales the force becomes the usual isotropic white noise
(2C0ε)

1/2dWi, which fixes aISR = aINT = 3
2
C0 ((3.9), cf. § 7). Only the viscous-range

parameter aVSR will be varied subsequently. It determines the decorrelation of velocity
differences on viscous scales where the Markov assumption is likely to fail. We hope
that a suitable choice of aVSR can partly compensate for the unphysical Markov
assumption in the viscous range.

The solution of the stochastic model in the Markov approximation can be computed
efficiently provided we know how to handle the multiplicative noise, i.e. the force
depending on the stochastic process itself. In order to find a stochastic force with
correlation M(r), we employ the decomposition property of isotropic matrices M =
MNNP+MLLN , where Pij = δij−ninj and Nij = ninj . Because PN = NP = 0 holds, we
can easily take the square root of M or for any power α = j/2 where j is an integer
Mα = Mα

NNP +Mα
LLM . A Gaussian white-noise with correlation 〈dfidfj〉 = Mijdt can

hence be generated as

dfi =
(
M

1/2
NNPij +M

1/2
LL Nij

)
dt1/2ξj, (6.7)

where the ξi are independent Gaussian random variables with variance one and mean
zero.

The forward Euler method is used for numerical time stepping of the stochastic
differential equations. Since we intend to integrate the model over several orders of
magnitude in time, we choose a variable step size comparable to the one of Thomson
(1990). Note that the Ito–Stratonovich dilemma does not enter here because the
stochastic forces in the velocity equation depend only on the separation and not on
the velocity vector itself. The so-called spurious drift vanishes.

We compare the statistics of our model to the two-particle DNS data of Yeung
(1994) at the moderate Reynolds number of Reλ = 90 by investigating similar
dispersion statistics. In order to determine the model parameter aINT we match the
long-time behaviour of the Markov model to the well-known Taylor result for times
much larger than the Lagrangian integral time scale t� TL:

〈(r(t)− r0)
2〉 = 12u′2TLt, (6.8)

which yields aINT = (3u′2/v2
η)/(TL/τη) = 8.0, where we have used the DNS data

u′2/v2
η = 23.2 and TL/τη = 8.7. The integral length scale of the DNS is L1/η = 56.0.

All the statistics shown in the following are generated for aISR = aINT = 8.0. As a
first guess we choose aVSR = 8 as well, but we will see that larger values give better
agreement with the velocity statistics of the DNS. Note that the Lagrangian integral
time scale TL depends on the choice of the external force employed in the DNS to
drive the turbulence.

Figure 1 shows the growth of the root-mean-square (r.m.s.) separation 〈(r(t)−r0)
2〉1/2

for different initial separations. Over sufficiently small times (t � 10τη) the fluid
particles move in straight lines, with no appreciable change in their relative velocity.
This accounts for the linear increase in r.m.s. separation, regardless of the initial
separation. The velocity variance determines the initial behaviour 〈(r(t) − r0)

2〉 =
〈v2(0)〉t2.

Note that we cannot satisfy the initial condition (3.3) accurately, since the exact form
of PE(v|r) is unknown. Here we simply give all particles the same initial separation
r0/3

1/2(1, 1, 1)T and velocity v(r0, 0) = (Dii(r0)/3)1/2(1, 1, 1)T which approximates the
short-time behaviour of the DNS sufficiently well and indicates the good quality of
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Figure 1. Root-mean-square separation 〈(r(t) − r0)2〉1/2/η versus time t/τη in Kolmogorov scaling

for two particles initially separated by 1
4
η, η, 4η, 16η, 64η from bottom to top, respectively. Lines

show DNS data, model results are dashed (Reλ = 90, aVSR = 8.0).
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Figure 2. As figure 1 but for aVSR = 20.

the interpolation function (2.9). This simple choice of the initial velocities obviously
violates (3.3). However, the stochastic force almost instantaneously randomizes the
initial velocities such that the bias due to our unphysical initial condition decays
rapidly during the first few time steps.

For small times t 6 TL the model gives a surprisingly accurate description of
the dispersion, also as expected for very long times where the Taylor result applies.
At small times one expects 〈r2(t)〉 to grow exponentially and accordingly 〈(r(t) −
r0)

2〉 should have an exponential transition region between viscous and inertial or
integral scales (Batchelor 1952; Grossmann & Procaccia 1984). The model shows the
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Figure 3. Root-mean-square separation versus time for particles initially separated by 1
4
η, η, 4η,

from bottom to top respectively. Also shown is a line with slope 3/2 (Reλ = 104, aVSR = 8).

aISR G∆ sk(r) fl(r)

8 0.44 1.10 4.7
12 0.31 1.20 5.0
20 0.14 1.35 5.8
30 0.07 1.45 6.3

Table 1. Dependence of the inertial-range values of the r.m.s. separation (i.e. the Richardson
constant G∆), the skewness, and the flatness of the separation magnitude on the model parameter
aISR.

exponential growth for small initial separations with a growth rate determined by the
parameter aVSR. Figure 2 presents the separation statistics for aVSR = 20: for small r0

the small-time separation decreases whereas the agreement with the DNS improves at
times t > 50η. The deviations of the modelled dispersion from the DNS are mainly
due to the lack of an appreciable exponential growth region in the DNS.

At intermediate times (τη � t � TL) and high Reynolds numbers one expects a
Richardson law

〈r2(t)〉 = G∆εt
3. (6.9)

Note that there is no indication of a Richardson law at the moderate Reλ of the DNS.
The curves for small initial separations in figures 1 and 2 show a growth even stronger
than t3/2 linking viscous and integral scales. The Richardson scaling can be observed
at the much higher Reynolds number Reλ = 104 which is far beyond the reach of
DNS and roughly of the order of atmospheric turbulence (figure 3). Remarkably, even
at this very high Reλ the t3/2-law extends over less than two decades. The dependence
of the Richardson constant G∆ on inertial range parameter aISR is given in table 1.
It varies in approximately the same range as the highly uncertain experimental value
0.06–0.45 (Tatarski 1960 gives 0.06 which seems to be the only available measurement;
Malik 1991 gets a range of G∆ values dependent on how ε is estimated from the
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Figure 4. Skewness and flatness of the separation magnitude r(t) = |r(t)| versus time t/TL in
integral scaling for r0 ≡ |r0| = 1

4
η and η. For comparison the theoretical skewness (0.5) and flatness

(3.1) of a χ2-distribution are shown (Reλ = 90, aVSR = 20).

Tatarski data). Kinematic simulations also predict a value O(0.1), but so far do not
include a viscous range and are computationally much more expensive than our
Markovian random flight simulations (Fung et al. 1992; Fung & Vassilicos 1997;
Elliott & Majda 1996). However, our G∆ is smaller than that of two-point closure
theories such as EDQNM (G∆ ∼ O(1)). Grossmann & Procaccia (1984), who also
apply the Mori–Zwanzig projector formalism but completely neglect memory effects,
obtain a very large G∆ = 13. Comparison to stochastic models of the well-mixed type
will be made in the next section.

As in the DNS, we find that the particle separation vectors at large times are
Gaussian to a very good approximation, which is reflected by a chi-square distribution
of the p.d.f. magnitude of the separation r = |r|. The theoretical skewness and flatness
factors equal 0.5 and 3.1, respectively and are also obtained by the model for t� TL
(figure 4). The short-time behaviour (not shown in Yeung 1994) for small initial
separations is highly non-Gaussian with the skewness as well as the flatness of r
showing a large peak increasing with smaller initial separations. This high peak
results from the fact that after the straight initial movement some particle pairs have
drifted far apart and have large relative velocities, while most pairs are still close
together having smaller relative velocities. The qualitative trend is well captured by
our model; however, the peak values are very sensitive to the choice of aVSR and
for aVSR 6 20 are somewhat underestimated. The DNS peak values for the skewness
and flatness of r at r0/η = 1/4 are 5 and 40, whereas they are 3.6 and 25 for the
model with aVSR = 20, respectively. In the inertial range the p.d.f. of r retains its
non-Gaussian form, however less pronounced and skewness sk(r) and flatness fl(r)
are constant and independent of the initial separation. Numerical values are listed in
table 1.

The statistics of the relative velocity field determines the rate at which two fluid
particles separate from each other depending on the Eulerian spatial correlation as
a function of the particle separation. Yeung investigates the particle–pair velocity
correlation ρ(u(1)

1 , u
(2)
1 ) = 〈u(1)

1 u
(2)
1 〉/u′2 where u(1) = u(t; x0) and u(2) = u(t; x0 + r0)
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Figure 5. Two-particle velocity correlation ρ ≈ 1− 〈v2(t)〉/6u′2 versus time. The initial separations
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Figure 6. The flatness of one component w of the relative velocity versus time for r0 = 1
4
η and

different viscous-range parameters (aVSR = 8, 20, and 30, Reλ = 90).

(Yeung 1994). Owing to homogeneity the one-particle velocity variance equals u′2 and
is independent of the initial position and hence ρ(u(1)

1 , u
(2)
1 ) = 1− 〈v2(t)〉/6u′2. Figure 5

shows the correlation coefficient for several initial separations. The modelled velocities
de-correlate quicker than those of the DNS; however, especially compared to the DNS
at the higher Reλ = 140 (Yeung 1997) the overall agreement is satisfactory.

The evolution of the flatness of the relative velocity is shown in figure 6. At large
times the flatness approaches the Gaussian value of 3, corresponding to the difference
of two Gaussian-distributed-single particle velocities in homogeneous turbulence.
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Figure 7. The flatness of the relative velocity component w versus time for particles initially
separated by 1
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η, 1
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η, η. Lines indicate the Gaussian values 3 and 3.4 (Reλ = 104, aVSR = 20).

aISR fl(w) sk(V ) fl(V )

8 3.40 0.35 3.35
12 3.45 0.30 3.45
20 3.50 0.25 3.50
30 3.50 0.20 3.50

Table 2. Dependence of the inertial-range values of the flatness of one velocity component w and
the skewness and flatness of the longitudinal velocity difference V on aISR.

For very small times (t 6 τη) and small initial separations the relative velocity is
proportional to the velocity gradient which is intermittent and non-Gaussian. This is
not reflected by our model which does not take intermittency into account and hence
predicts the Gaussian value of 3 initially. It now becomes clear that our somewhat
artificial delta-distribution of the initial velocities has little effect even on the short-
time behaviour, which is determined by the distribution of the stochastic force. Note
that there is considerable statistical uncertainty in the DNS data. At intermediate
times (on a logarithmic scale) and for small r0/η, the flatness passes through a very
high non-Gaussian peak corresponding to the one found for the separation flatness.
In contrast to the flatness of the separation r, the large values of the velocity flatness
(fl(w) > 50 in the DNS at r/η = 1/4) do not depend crucially on aVSR (figure 6).
Flatness values of that order are obtained by our model only for much smaller initial
separations (r0/η = 1/16, figure 7).

Clearly, the high flatness values are a property of the transition region between the
viscous and the inertial range. The flatness in the inertial range (≈ 3.4) as predicted
by the model is only slightly larger than the Gaussian value of 3 which again is
obtained in the large-time limit (figure 7, table 2). Physical particles initially close to
each other remain so until they are swept apart by different eddies of much larger
size which rapidly increase their separation and highly distort the p.d.f. of relative
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Figure 8. Skewness and flatness of longitudinal velocity differences V ≡ v · r/r versus time for
particles initially separated by 1

4
η and η. Lines indicate the numerical values 0, 0.35, 3, and 3.35,

respectively (Reλ = 104, aVSR = 20).

separations and velocities. In the inertial range, however, particles are separated by
eddies of the size of their separation resulting in velocity p.d.f.s much closer to
Gaussian.

We believe that non-Markovian effects of the velocity histories are responsible
for the large deviation of the short-time dispersion behaviour from Gaussianity.
Kinematic simulation which creates non-random trajectories gives a quantitatively
better agreement for the Lagrangian velocity flatness (N. Malik and J. C. Vassilicos,
private communication).

In table 2 we also give the inertial range values of the skewness and flatness of
the longitudinal relative velocity dr/dt = v · r/r ≡ V . We point out that the modelled
skewness of V is always positive opposite to the Eulerian velocity differences, but
in accordance to DNS data (P. K. Yeung, private communication, figure 8). Again,
peak values are likely to be underestimated but the qualitative behaviour should be
similar.

Figure 9 displays the variance 〈∆vi∆vi〉 of the relative velocity increments ∆v =
v(t) − v(0) which for r0 � L1 equals the one-particle Lagrangian structure function
2〈∆ui∆ui〉 ≡ 6D(t). Whereas the long-time behaviour of the Markov model coincides
with that of the DNS, the short-time behaviour of the Markov model proportional
to t is qualitatively in error with the physical one of the DNS (proportional to t2).
We also show the non-Markovian one-particle model of Sawford (1991), which has
the correct quadratic short-time behaviour (see the discussion in § 7).

Finally, we investigate the probability of alignment between the separation r(t)
and velocity vector v(t), which determines whether particle pairs are instantaneously
moving apart or coming closer to each other. An acute alignment angle θ means
the particles are moving apart cos θ = V/|v| > 0. The probability of acute alignment
Pθ = P (0 < θ < 90◦) for r0 = 1

4
η is shown in figure 10. A preferred alignment begins

to develop as the particles separate from each other, particularly strong at small times
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Figure 10. Probability of acute alignment between separation and relative velocity vectors
Pθ = P (0 < θ < 90◦) for particles initially separated by r0 = 1

4
η and viscous-range parameters

aVSR = 8 and 20, respectively (Reλ = 90).

(t 6 10TL). The very slow decrease of alignment at large times is well captured by an
Ornstein–Uhlenbeck process to which the model reduces at large times.

The rate of increase of r.m.s. separation is given by 1
2
d〈r2〉/dt = 〈rV 〉. The corre-

lation coefficient ρ(r, V ) = 〈rV 〉/(〈r〉〈V 〉) − 1 is displayed in figure 11 at a high Reλ.
The peak value for short times and r/η = 1/4 is 2.8 close to the DNS value of 3.2.
The long-time asymptotic value of 0.18 is within a few percent of that of the DNS,
figure 11, see also table 3).
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Figure 11. Evolution of the correlation coefficient ρ(V , r) for initial separations 1
4
η and η. Lines

indicate the numerical values 0.18 and 0.34, respectively (Reλ = 104, aVSR = 20).

aISR Pθ ρ(V , r)

8 0.80 0.34
12 0.75 0.37
20 0.68 0.43
30 0.63 0.49

Table 3. Dependence of the inertial-range values of the probability of acute alignment
Pθ = P (0 < θ < 90◦) and the correlation coefficient ρ(V , r) on aISR.

7. Discussion and conclusions
Stochastic modelling of Lagrangian velocities has been successfully applied to

dispersion studies (Thomson 1987, 1990) and more recently by Pedrizzetti & Novikov
(1994) to modelling the Eulerian p.d.f. of velocity increments. There are two main
results of this work. The first provides a formal background to these models in
the form of an exact nonlinear generalized Langevin equation (4.24). The well-
known Mori–Zwanzig projector formalism is adapted to the dynamics of Lagrangian
velocity differences and applied to the Navier–Stokes equations. The inherent difficulty
of the projector method in obtaining information about the random force makes it
impossible to derive mathematical rigorous results. Nevertheless, we demonstrate the
usefulness of our theoretical approach for the construction of stochastic dispersion
models clarifying the assumptions underlying a stochastic description of turbulent
dispersion. We have introduced the generalized Langevin equation as a suitable
structure on which one can impose further approximations such as the Markov
assumption and stochastic estimation of the model coefficients.

Secondly, we compare the modelled dispersion behaviour to DNS. For that to
be feasible one has to include the viscous scales. We show that merely adjusting
the second-order structure function does not adequately change the Lagrangian
decorrelation time. Surprisingly, our stochastic model gives a robust qualitative picture
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of small-scale moderate Reynolds number dispersion despite the obviously unphysical
Markov assumption on viscous scales. In contrast to DNS, the model readily extends
to high Reynolds number inertial-range dispersion where the Markov approximation
is probably more reliable. We find further support for a Richardson constant of the
order 0.1 previously found in experiments and kinematical simulations.

How does the inertial-range dispersion compare to the well-mixed models? In the
long-time limit t � TL the two particles become statistically independent of each
other and all models reduce to the well-known one-particle Langevin equation for
one velocity component U(t):

dU(t) = − 1

TL
U(t) dt+

(2u′2

TL

)1/2

dW (t). (7.1)

If one accepts (7.1) as a high Reynolds number model, TL is related to the
Lagrangian Kolmogorov constant C0, the inertial-range coefficient of the Lagrangian
structure function D(t) = C0εt (see e.g. Pope 1994: T−1

L = C0ε/2u
′2). There is great

uncertainty about the numerical value of C0. Estimates from DNS and experiments
vary in the range C0 = 2–7 possibly due to a strong Reynolds number dependence
(Pope 1994; Du et al. 1995). Using similar inertial-range arguments the amplitude
of the stochastic force of the well-mixed models is usually taken as (2C0ε)

1/2 which
implies in our notation aISR = aINT = 3

2
C0. From our consideration in § 5 there is little

a priori reason why the amplitude of the stochastic force should be the same in the
inertial range and on integral scales, i.e. aISR might be different from aINT, especially if
there is an external force acting on integral scales only. Clearly, the larger C0 or aISR

the more G∆ decreases and the smaller the relevance of the conditional acceleration
becomes.

For the same C0 our G∆ is at the lower end of the Richardson coefficients predicted
by different well-mixed models (C0 ≈ 6: G∆ ≈ 0.6–1.2, Borgas & Sawford 1994). Note
that stochastic models based on the moments approximation approach in general do
not satisfy the well-mixed condition as discussed for the one-particle case by Du et
al. (1994). If the well-mixed condition is violated a uniform Eulerian distribution is
no longer guaranteed, i.e.

∫
dvPE(v|r) might not equal unity, although this is difficult

to check numerically. Furthermore, satisfying the second-moment constraint does not
guarantee that PE actually possesses a skewness given by the Kolmogorov structure
equation. Errors in the higher moments can propagate down to the third or second
order due to the coupling of moments of different orders in the hierarchy implied by
the continuity equation (4.25), (D. J. Thomson, private communication). In principle,
the models can be improved by taking intermittency and non-Markovian effects into
account.

7.1. Intermittency and conditional averages

The generalized Langevin equation reformulates the entire Navier–Stokes dynamics
and hence includes intermittency effects, too. However, here we do not allow for
any intermittency corrections of Eulerian statistics appearing in the approximate
model coefficients. This can be justified by noting that only low-order structure
functions are included for which those intermittency corrections are known to be small
(Frisch 1995). However, as mentioned above, small-scale velocity statistics strongly
deviate from Gaussianity such that one can at best expect qualitative predictions
from a simple ‘non-intermittent’ model. The inclusion of intermittency effects would
necessarily introduce further arbitrariness to the model.

Obviously, a better knowledge of the Eulerian flow statistics, i.e. PE(v|r), can
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immediately be incorporated in the memory-induced part of the systematic drift term
Mij∂vj logPE in (5.19). On the other hand, it seems to be practically impossible to
relax the Gaussian assumption on the distribution of the random force f(t).

Even for given stationary Eulerian statistics the separation of two fluid particles
is a non-stationary process, since the particles tend to separate in time. As discussed
by Thomson (1996), neither the well-mixed models together with the assumption
of a Gaussian Eulerian p.d.f. nor the EDQNM closure is capable of accounting
for the lack of time reversal asymmetry in turbulent dispersion. We find that the
time reversal asymmetry is related to the acceleration conditionally averaged for
fixed velocity increments A. Extending ideas of GT82, stochastic estimation relates
A to the skewness of velocity increments and hence to the energy dissipation in the
inertial range via the Kolmogorov structure equation independent of any intermittency
corrections.

Approximations of conditional averages in terms of low-order polynomials have
received a great deal of attention recently, especially in the context of the turbulent
mixing of a passive scalar (Pope & Ching 1993; Kraichnan, Yakhot & Chen 1995,
Appendix B). Although the ansatz (5.1) has the form of a Taylor expansion about the
given data (here v), the linear approximation as the lowest non-trivial contribution
(to the conditional scalar dissipation in the case of scalar mixing) gives surprisingly
accurate results even for larger values of the given data (Pope & Ching 1993;
Kraichnan et al. 1995). This is partly due to the fact that the linear mean-square
estimate is exact if (in our case) Lv and v are joint normally distributed (Adrian
1996). Moreover, the good quality of the linear approximation also results from the
potential of the expansion in orthogonal polynomials of the delta-function in the
conditional average to be uniformly convergent (Kraichnan 1970). Of course, Lv and
v considered here cannot be joint Gaussian since the skewness of v is non-vanishing
and given by the Kolmogorov structure equation.

The extension of low-order stochastic estimation to the turbulent velocities sug-
gested in this work requires further numerical and experimental investigations. It will
be very interesting to see whether a simple polynomial expression such as the linear
(5.4) or the quadratic (5.6) approximation is capable of describing the conditional
acceleration.

7.2. Non-Markovian effects

The short-time dispersion behaviour of the model can be improved by allowing for
non-Markovian effects. Whereas this seems to be difficult and computationally expen-
sive for the two-particle case, it is instructive to look at non-Markovian corrections
in the one-particle or large-separation limit r →∞.

The simplest generalization to a delta-correlated random force or memory is an
exponentially decaying one

〈fi(t)fj(0)|v〉 ≈ KLL(r)e−γ̃LL(r)tninj +KNN(r)e−γ̃NN (r)t(δij − ninj), (7.2)

where Kij(r) = 〈Lvi(r)Lvj(r)〉 denotes the memory amplitude and γ̃∗ the memory
damping. In the large-separation limit the drift 〈Lv0|v(r)〉 vanishes and all matrices
become isotropic and r-independent, e.g. Kij → ku′2δij , where k = k∗ = a′2/u′2 and a′2

is the acceleration variance 1
3
(〈(∇p)2〉+ ν2〈(∇2u)2〉).

Considering only one velocity component and assuming the Eulerian p.d.f. to be
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Gaussian, the generalized Langevin equation (4.24) reads

d

dt
U(t) = −

∫ t

0

ke−γ̃(t−τ)U(τ) dτ+ f(t), (7.3)

where f(t) is a Gaussian random force correlated as

〈f(t)f(0)〉 = ku′2e−γ̃t. (7.4)

It is readily shown (by Laplace transformation) that the non-Markovian model (7.3)
corresponds to an asymptotically stationary white-noise model for the Lagrangian
acceleration A(t) = U̇(t) which is exactly the second-order autoregressive stochastic
model of Sawford (1991) (see also Pope 1994; Heinz 1997):

dA(t) + α1A(t) dt+ α2

∫ t

0

A(t′) dt′ dt = (2α1α2u
′2)1/2 dW (t), (7.5)

where α1 = γ̃ and α2 = k. For an appropriately chosen memory damping γ̃ the model
shows a remarkable agreement with the DNS of Yeung & Pope (1989). The physical
inconsistency of modelling the acceleration as a Markov process can be removed by
choosing a memory function with vanishing time derivatives at the origin.
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useful comments.
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Appendix A
We derive the continuity equation of the Eulerian p.d.f. P (v|r0) (4.25) from

Lδ(v − v0) = −{Lv0j}∂vj δ(v − v0) (A 1)

and by using (4.12)

PLδ(v − v0) =

∫
dv′
〈Lδ(v − v0)δ(v′ − v0)〉

PE(v′|r0)
δ(v′ − v0)

= − ∂vj
(
〈Lv0j |v〉δ(v − v0)

)
. (A 2)

Applying the skewness formula (4.8) to (A 2) yields

− ∂vj
(
〈Lv0j |v〉δ(v − v0)

)
=

∫ (
− dv′

〈δ(v − v0)Lδ(v′ − v0)〉
PE(v′|r0)

+
vm∂rm〈δ(v − v0)δ(v′ − v0)〉

PE(v′|r0)

)
δ(v′ − v0)

= −〈δ(v − v0)Lv0j〉∂vj
δ(v − v0)

PE(v|r0)
+
vm∂rmPE(v|r0)

PE(v|r0)
δ(v − v0), (A 3)

where again we used (4.12), (A 1) and partial integration. Ensemble averaging then
leads to the continuity equation for the Eulerian p.d.f. PE (4.25).

The alternative formulation of the memory kernel (4.22) can be obtained from the
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skewness formula (4.8) if the turbulence is stationary and homogeneous:

〈Lf(τ)|v〉PE(v|r0) = 〈Lf(τ)δ(v − v0)〉
= −〈f(τ)Lδ(v − v0)〉+ vm∂rm〈f(τ)δ(v − v0)〉, (A 4)

where the second term vanishes because of f(τ) = Qf(τ) and Qδ(v− v0) = 0. The first
term in (A 4) yields (4.22) by means of (A 1):

∂vj 〈f(τ)QLv0δ(v − v0)〉 = ∂vj

(
〈f(τ)f(0)|v〉PE(v|r0)

)
. (A 5)

Appendix B
Here we briefly sketch how to apply our new approach to stochastic modelling to

the Lagrangian concentration differences between two particles. Regardless of any
memory effects we find exactly the scalar probability density closure of Kraichnan
(1994), which successfully compares to DNS and seems to give a reasonable account
even of higher-order scalar structure functions showing anomalous (non-Kolmogorov)
scaling (Kraichnan et al. 1995).

We consider the concentration difference between two fluid particles initially at
time t = 0 separated by a distance r0 denoted as

∆φ(t) ≡ φ(X (t; x0 + r0))− φ(X (t; x0)), (B 1)

which evolves by the advection–diffusion equation written here for concentration
differences:

d

dt
∆φ(t) = κ∇2

x∆φ(t), (B 2)

where κ is the molecular diffusivity and ∇2
x = ∂xm∂xm .

In order to make analytical progress, we have to choose the simplest model for the
convection of fluid particles, namely the Markov model of § 5 in the diffusion limit
(Thomson 1987; Borgas & Sawford 1994). Note that this is only for mathematical
convenience: for the implementation of a Monte Carlo solution algorithm the full
Markov model might give more reliable results without much additional numerical
effort.

In the diffusion limit we obtain the following stochastic mixing model:

dri(t) = 1
2
η(r(t))

1/2
kj ∂rkη(r(t))

1/2
ij dt+ η(r(t))

1/2
ij dWj(t), (B 3)

d∆φ(t) = −γφ(r(t))∆φ(t) dt, (B 4)

where the memory of scalar differences has been neglected, an approximation which
improves with increasing Péclet number. The eddy diffusivity η∗(r) ∝ γ−1

∗ (r)D∗(r)
shows the expected behaviour η∗ ∝ r2 in the VSR and η∗ ∝ r4/3 in the ISR.

The relaxation coefficient γφ(r) in the passive scalar field equation (B 4) is the linear
stochastic estimate of the conditionally averaged scalar diffusion 〈κ∇2

x∆φ0|∆φ(r)〉 and
is given by

γφ(r) = −〈∆φ(r)Lφ∆φ(r)〉
〈(∆φ(r))2〉 = −κ∇

2
r S2(r)− ∇2

r S2(0)

S2(r)
, (B 5)

where ∇2
rF(r) = ∂rm∂rmF = 1/r2∂r(r

2∂rF) due to isotropy. This can be seen by using
an explicit representation of the time evolution operator Lφ analogously to the

procedure for the evaluation of A(1)
i in § 5. Then, by making use of the equivalent of
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the Kolmogorov structure equation for the scalar (the Yaglom equation) one arrives
at (B 5).

The Fokker–Planck equation according to the model (B 3) and (B 4) can now
be derived for the Lagrangian p.d.f. PL(∆φ, r, t|r0) of two fluid particles having a
concentration difference ∆φ and separation r given that they were separated by r0

initially. By means of the fundamental relation (cf. (3.2))

PE(∆φ|r, t) =

∫
PL(∆φ, r, t|r0, t0)dr0 (B 6)

this Fokker–Planck equation is also obeyed by the Eulerian p.d.f. PE(∆φ|r, t) of the
concentration difference ∆φ at time t between two fixed points at distance r and can
be written in the stationary state as

− (1/r2)∂r

(
r2ηLL(r)∂rPE

)
= ∂∆φ

(
γφ∆φPE

)
. (B 7)

Isotropy implies that PE depends only on r = |r|. Note that (B 7) holds even if memory
effects of the scalar (but not of the velocity field) are taken into account. Equation
(B 7) is a special case of the exact equation

∂ri

(
〈vi|∆φ(r)〉PE

)
+∂∆φ

(
〈κ∇2

x∆φ|∆φ(r)〉PE
)

= 0. (B 8)

Taking the even moments of (B 7), i.e. multiplying by (∆φ)2n and integrating over
∆φ, gives a differential equation for the even-order scalar structure functions S2n(r) =
〈(∆φ)2n〉 yielding anomalous inertial-range scaling S2n(r) ∝ rζ2n with ζ2n ∝ n1/2. Closed
equations for the scalar structure functions are possible because (B 3) is linear in
∆φ. This is exactly the Kraichnan p.d.f. closure derived here from a Lagrangian
approach. At second order the well-known Batchelor (1959) phenomenology of the
scalar structure function S2(r) is recovered.

From our point of view especially the linear estimation of the conditional average
is important. It has received strong support from numerical simulations (Kraichnan
et al. 1995) and experiments (Ching et al. 1996).
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